A Reinforcement Learning Based Universal Sequence Design for Polar Codes

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence design framework that is extensible and adaptable to diverse channel conditions and decoding strategies. Crucially, our method scales to code lengths up to 2048, making it suitable for use in standardization. Across all (N,K)(N, K)(N,K) configurations supported in 5G, our approach achieves competitive performance relative to the NR sequence adopted in 5G and yields up to a 0.2 dB gain over the beta-expansion baseline at N=2048N = 2048N=2048. We further highlight the key elements that…