Large language models (LLMs) now sit in the critical path of search, assistance, and agentic workflows, making semantic caching essential for reducing inference cost and latency. Production deployments typically use a tiered static-dynamic design: a static cache of curated, offline vetted responses mined from logs, backed by a dynamic cache populated online. In practice, both tiers are commonly governed by a single embedding similarity threshold, which induces a hard tradeoff: conservative thresholds miss safe reuse opportunities, while aggressive thresholds risk serving semantically incorrect…