12AUMcKKAb8q2cI9VOLPpDKVw

How Palantir Foundry’s Ontology Deploys Data Science to the Front Line

In today’s enterprise, the role of the data scientist can seem deceptively simple: generate insights from data and deliver them to decision makers. This process can look like a one-way trip — models are delivered, the business takes action, and the data scientists are left wondering if and how their models have driven impact. Moreover, the sober …

ML 12440 image001

Automatically retrain neural networks with Renate

Today we announce the general availability of Renate, an open-source Python library for automatic model retraining. The library provides continual learning algorithms able to incrementally train a neural network as more data becomes available. By open-sourcing Renate, we would like to create a venue where practitioners working on real-world machine learning systems and researchers interested …

pytorch model zoo blog post architecture diagram

Create Amazon SageMaker models using the PyTorch Model Zoo

Deploying high-quality, trained machine learning (ML) models to perform either batch or real-time inference is a critical piece of bringing value to customers. However, the ML experimentation process can be tedious—there are a lot of approaches requiring a significant amount of time to implement. That’s why pre-trained ML models like the ones provided in the PyTorch …

Collateral IT: Optimizing HSBC asset allocation with Google Cloud

Have you ever heard of an optimization problem? Imagine you have a million marbles, all of different sizes, colors, patterns, and weights. You need to fill up 1,000 jars of different sizes with them, but each jar has restrictions as to which colors, patterns, and how many marbles of each type it can hold. After …

1 Hyperparameter 121922.max 1000x1000 1

Perform hyperparameter tuning using R and caret on Vertex AI

To produce any sufficiently accurate machine learning model, the process requires tuning parameters and hyperparameters. Your model’s parameters are variables that your chosen machine learning technique uses to adjust to your data, like weights in neural networks to minimize loss. Hyperparameters are variables that control the training process itself. For example, in a multilayer perceptron, …