This paper introduces a novel generative modeling framework grounded in phase space dynamics, taking inspiration from the principles underlying Critically Damped Langevin Dynamics (CLD). Leveraging insights from stochastic optimal control, we construct a favorable path measure in the phase space that proves highly advantageous for generative sampling. A distinctive feature of our approach is the early-stage data prediction capability within the context of propagating generating Ordinary Differential Equations (ODEs) or Stochastic Differential Equations (SDEs) processes. This early prediction…