We revisit the problem of designing scalable protocols for private statistics and private federated learning when each device holds its private data. Locally differentially private algorithms require little trust but are (provably) limited in their utility. Centrally differentially private algorithms can allow significantly better utility but require a trusted curator. This gap has led to significant interest in the design and implementation of simple cryptographic primitives, that can allow central-like utility guarantees without having to trust a central server.
Our first contribution is to…
Our first contribution is to…